Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38559047

RESUMO

WWC2 (WW and C2 domain-containing protein) is implicated in several neurological disorders, however its function in the brain has yet to be determined. Here, we demonstrate that WWC2 interacts with inhibitory but not excitatory postsynaptic scaffolds, consistent with prior proteomic identification of WWC2 as a putative component of the inhibitory postsynaptic density. Using mice lacking WWC2 expression in excitatory forebrain neurons, we show that WWC2 suppresses GABA A R incorporation into the plasma membrane and regulates HAP1 and GRIP1, which form a complex promoting GABA A R recycling to the membrane. Inhibitory synaptic transmission is dysregulated in CA1 pyramidal cells lacking WWC2. Furthermore, unlike the WWC2 homolog KIBRA (WWC1), a key regulator of AMPA receptor trafficking at excitatory synapses, deletion of WWC2 does not affect synaptic AMPAR expression. In contrast, loss of KIBRA does not affect GABA A R membrane expression. These data reveal unique, synapse class-selective functions for WWC proteins as regulators of ionotropic neurotransmitter receptors and provide insight into mechanisms regulating GABA A R membrane expression.

2.
Neurobiol Dis ; 182: 106136, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37120096

RESUMO

Fragile X Messenger Ribonucleoprotein (FMRP) is necessary for experience-dependent, developmental synapse elimination and the loss of this process may underlie the excess dendritic spines and hyperconnectivity of cortical neurons in Fragile X Syndrome, a common inherited form of intellectual disability and autism. Little is known of the signaling pathways that regulate synapse elimination and if or how FMRP is regulated during this process. We have characterized a model of synapse elimination in CA1 neurons of organotypic hippocampal slice cultures that is induced by expression of the active transcription factor Myocyte Enhancer Factor 2 (MEF2) and relies on postsynaptic FMRP. MEF2-induced synapse elimination is deficient in Fmr1 KO CA1 neurons, and is rescued by acute (24 h), postsynaptic and cell autonomous reexpression of FMRP in CA1 neurons. FMRP is an RNA binding protein that suppresses mRNA translation. Derepression is induced by posttranslational mechanisms downstream of metabotropic glutamate receptor signaling. Dephosphorylation of FMRP at S499 triggers ubiquitination and degradation of FMRP which then relieves translation suppression and promotes synthesis of proteins encoded by target mRNAs. Whether this mechanism functions in synapse elimination is not known. Here we demonstrate that phosphorylation and dephosphorylation of FMRP at S499 are both necessary for synapse elimination as well as interaction of FMRP with its E3 ligase for FMRP, APC/Cdh1. Using a bimolecular ubiquitin-mediated fluorescence complementation (UbFC) assay, we demonstrate that MEF2 promotes ubiquitination of FMRP in CA1 neurons that relies on activity and interaction with APC/Cdh1. Our results suggest a model where MEF2 regulates posttranslational modifications of FMRP via APC/Cdh1 to regulate translation of proteins necessary for synapse elimination.


Assuntos
Proteína do X Frágil da Deficiência Intelectual , Síndrome do Cromossomo X Frágil , Animais , Camundongos , Fatores de Transcrição MEF2/metabolismo , Proteína do X Frágil da Deficiência Intelectual/genética , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Fosforilação/genética , Sinapses/metabolismo , Síndrome do Cromossomo X Frágil/genética , Camundongos Knockout
3.
Biochemistry ; 57(5): 520-524, 2018 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-29264923

RESUMO

Activity-regulated cytoskeletal-associated protein (Arc, also known as activity-regulated gene 3.1 or Arg3.1) is induced in neurons in response to salient experience and neural activity and is necessary for activity-induced forms of synaptic plasticity, such as long-term potentiation (LTP) and long-term depression (LTD), cellular substrates of learning and memory. The best-characterized function of Arc is enhancement of the endocytic internalization of AMPA receptors in dendritic spines, a process associated with LTD. Arc has also been implicated in the proteolytic processing of amyloid precursor protein on the surface of endosomes. To mediate these activities, Arc must associate with cellular membranes, but it is unclear whether Arc binds directly to the lipid bilayer or requires protein-protein interactions for membrane recruitment. In this study, we show that Arc associates with pure phospholipid vesicles in vitro and undergoes palmitoylation in neurons, a modification that allows it to insert directly into the hydrophobic core of the bilayer. The palmitoylated cysteines are clustered in a motif, 94CLCRC98, located in the N-terminal half of the protein, which has not yet been structurally characterized. Expression of Arc with three mutated cysteines in that motif cannot support synaptic depression induced by the activity-dependent transcription factor, MEF2 (myocyte enhancer factor 2), in contrast to wild-type Arc. Thus, it appears that palmitoylation regulates at least a subset of Arc functions in synaptic plasticity.


Assuntos
Proteínas do Citoesqueleto/metabolismo , Bicamadas Lipídicas/metabolismo , Lipoilação , Depressão Sináptica de Longo Prazo , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Animais , Células HeLa , Hipocampo/metabolismo , Humanos , Potenciação de Longa Duração , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/citologia , Palmitatos/metabolismo , Receptores de AMPA/metabolismo
4.
Semin Cell Dev Biol ; 77: 51-62, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-28969983

RESUMO

The Arc gene is robustly transcribed in specific neural ensembles in response to experience-driven activity. Upon induction, Arc mRNA is transported to dendrites, where it can be rapidly and locally translated by activation of metabotropic glutamate receptors (mGluR1/5). mGluR-induced dendritic synthesis of Arc is implicated in weakening or elimination of excitatory synapses by triggering endocytosis of postsynaptic AMPARs in both hippocampal CA1 and cerebellar Purkinje neurons. Importantly, CA1 neurons with experience-induced Arc mRNA are susceptible, or primed for mGluR-induced long-term synaptic depression (mGluR-LTD). Here we review mechanisms and function of Arc in mGluR-LTD and synapse elimination and propose roles for these forms of plasticity in Arc-dependent formation of sparse neural representations of learned experience. We also discuss accumulating evidence linking dysregulation of Arc and mGluR-LTD in human cognitive disorders such as intellectual disability, autism and Alzheimer's disease.


Assuntos
Transtornos Cognitivos/patologia , Proteínas do Citoesqueleto/metabolismo , Depressão Sináptica de Longo Prazo/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Plasticidade Neuronal/fisiologia , Receptor de Glutamato Metabotrópico 5/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Sinapses/metabolismo , Região CA1 Hipocampal/metabolismo , Transtornos Cognitivos/genética , Dendritos/metabolismo , Endocitose/fisiologia , Humanos , Células de Purkinje/metabolismo , Receptores de Glutamato/metabolismo
5.
Elife ; 62017 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-28901289

RESUMO

Experience and activity refine cortical circuits through synapse elimination, but little is known about the activity patterns and downstream molecular mechanisms that mediate this process. We used optogenetics to drive individual mouse CA1 hippocampal neurons to fire in theta frequency bursts to understand how cell autonomous, postsynaptic activity leads to synapse elimination. Brief (1 hr) periods of postsynaptic bursting selectively depressed AMPA receptor (R) synaptic transmission, or silenced excitatory synapses, whereas more prolonged (24 hr) firing depressed both AMPAR and NMDAR EPSCs and eliminated spines, indicative of a synapse elimination. Both synapse silencing and elimination required de novo transcription, but only silencing required the activity-dependent transcription factors MEF2A/D. Burst firing induced MEF2A/D-dependent induction of the target gene Arc which contributed to synapse silencing and elimination. This work reveals new and distinct forms of activity and transcription-dependent synapse depression and suggests that these processes can occur independently.


Assuntos
Região CA1 Hipocampal/fisiologia , Plasticidade Neuronal , Sinapses/metabolismo , Animais , Potenciais Pós-Sinápticos Excitadores , Fatores de Transcrição MEF2/metabolismo , Camundongos , Optogenética , Receptores de AMPA/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo
6.
Hum Mol Genet ; 26(2): 293-304, 2017 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-28025327

RESUMO

The Myocyte Enhancer Factor 2 (MEF2) transcription factors suppress an excitatory synapse number by promoting degradation of the synaptic scaffold protein, postsynaptic density protein 95 (PSD-95), a process that is deficient in the mouse model of Fragile X Syndrome, Fmr1 KO. How MEF2 activation results in PSD-95 degradation and why this is defective in Fmr1 KO neurons is unknown. Here we report that MEF2 induces a Protein phosphatase 2A (PP2A)-mediated dephosphorylation of murine double minute-2 (Mdm2), the ubiquitin E3 ligase for PSD-95, which results in nuclear export and synaptic accumulation of Mdm2 as well as PSD-95 degradation and synapse elimination. In Fmr1 KO neurons, Mdm2 is hyperphosphorylated, nuclear localized basally, and unaffected by MEF2 activation, which our data suggest due to an enhanced interaction with Eukaryotic Elongation Factor 1α (EF1α), whose protein levels are elevated in Fmr1 KO. Expression of a dephosphomimetic of Mdm2 rescues PSD-95 ubiquitination, degradation and synapse elimination in Fmr1 KO neurons. This work reveals detailed mechanisms of synapse elimination in health and a developmental brain disorder.


Assuntos
Proteína do X Frágil da Deficiência Intelectual/genética , Síndrome do Cromossomo X Frágil/genética , Guanilato Quinases/genética , Fatores de Transcrição MEF2/genética , Proteínas de Membrana/genética , Proteínas Proto-Oncogênicas c-mdm2/genética , Animais , Dendritos/metabolismo , Dendritos/patologia , Proteína 4 Homóloga a Disks-Large , Fator de Iniciação 1 em Eucariotos/genética , Síndrome do Cromossomo X Frágil/patologia , Humanos , Camundongos , Camundongos Knockout , Neurônios/metabolismo , Neurônios/patologia , Fosforilação , Proteína Fosfatase 2/genética , Proteólise , Sinapses/genética , Sinapses/patologia , Ubiquitinação/genética
7.
Cell Rep ; 7(5): 1589-1600, 2014 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-24857654

RESUMO

Experience refines synaptic connectivity through neural activity-dependent regulation of transcription factors. Although activity-dependent regulation of transcription factors has been well described, it is unknown whether synaptic activity and local, dendritic regulation of the induced transcripts are necessary for mammalian synaptic plasticity in response to transcription factor activation. Neuronal depolarization activates the myocyte enhancer factor 2 (MEF2) family of transcription factors that suppresses excitatory synapse number. We report that activation of metabotropic glutamate receptor 5 (mGluR5) on the dendrites, but not cell soma, of hippocampal CA1 neurons is required for MEF2-induced functional and structural synapse elimination. We present evidence that mGluR5 is necessary for synapse elimination to stimulate dendritic translation of the MEF2 target gene Arc/Arg3.1. Activity-regulated cytoskeletal-associated protein (Arc) is required for MEF2-induced synapse elimination, where it plays an acute, cell-autonomous, and postsynaptic role. This work reveals a role for dendritic activity in local translation of specific transcripts in synapse refinement.


Assuntos
Proteínas do Citoesqueleto/metabolismo , Dendritos/metabolismo , Fatores de Transcrição MEF2/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Receptor de Glutamato Metabotrópico 5/metabolismo , Sinapses/metabolismo , Animais , Região CA1 Hipocampal/citologia , Região CA1 Hipocampal/metabolismo , Células Cultivadas , Proteínas do Citoesqueleto/genética , Dendritos/fisiologia , Fatores de Transcrição MEF2/genética , Potenciais da Membrana , Camundongos , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso/genética , Biossíntese de Proteínas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptor de Glutamato Metabotrópico 5/genética , Sinapses/fisiologia
8.
Cell ; 151(7): 1581-94, 2012 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-23260144

RESUMO

The activity-dependent transcription factor myocyte enhancer factor 2 (MEF2) induces excitatory synapse elimination in mouse neurons, which requires fragile X mental retardation protein (FMRP), an RNA-binding protein implicated in human cognitive dysfunction and autism. We report here that protocadherin 10 (Pcdh10), an autism-spectrum disorders gene, is necessary for this process. MEF2 and FMRP cooperatively regulate the expression of Pcdh10. Upon MEF2 activation, PSD-95 is ubiquitinated by the ubiquitin E3 ligase murine double minute 2 (Mdm2) and then binds to Pcdh10, which links it to the proteasome for degradation. Blockade of the Pcdh10-proteasome interaction inhibits MEF2-induced PSD-95 degradation and synapse elimination. In FMRP-lacking neurons, elevated protein levels of eukaryotic translation elongation factor 1 α (EF1α), an Mdm2-interacting protein and FMRP target mRNA, sequester Mdm2 and prevent MEF2-induced PSD-95 ubiquitination and synapse elimination. Together, our findings reveal roles for multiple autism-linked genes in activity-dependent synapse elimination.


Assuntos
Guanilato Quinases/metabolismo , Hipocampo/metabolismo , Proteínas de Membrana/metabolismo , Neurônios/metabolismo , Animais , Transtorno Autístico/genética , Transtorno Autístico/metabolismo , Caderinas/metabolismo , Dendritos/metabolismo , Modelos Animais de Doenças , Proteína 4 Homóloga a Disks-Large , Proteína do X Frágil da Deficiência Intelectual/genética , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Síndrome do Cromossomo X Frágil/genética , Síndrome do Cromossomo X Frágil/metabolismo , Hipocampo/citologia , Humanos , Técnicas In Vitro , Camundongos , Camundongos Endogâmicos C57BL , Fatores de Regulação Miogênica/genética , Fatores de Regulação Miogênica/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Protocaderinas , Sinapses/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
9.
J Neurosci ; 32(17): 5924-36, 2012 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-22539853

RESUMO

Group 1 metabotropic glutamate receptor (mGluR)-stimulated protein synthesis and long-term synaptic depression (mGluR-LTD) are altered in the mouse model of fragile X syndrome, Fmr1 knock-out (KO) mice. Fmr1 encodes fragile X mental retardation protein (FMRP), a dendritic RNA binding protein that functions, in part, as a translational suppressor. It is unknown whether and how FMRP acutely regulates LTD and/or the rapid synthesis of new proteins required for LTD, such as the activity-regulated cytoskeletal-associated protein (Arc). The protein phosphatase PP2A dephosphorylates FMRP, which contributes to translational activation of some target mRNAs. Here, we report that PP2A and dephosphorylation of FMRP at S500 are required for an mGluR-induced, rapid (5 min) increase in dendritic Arc protein and LTD in rat and mouse hippocampal neurons. In Fmr1 KO neurons, basal, dendritic Arc protein levels and mGluR-LTD are enhanced, but mGluR-triggered Arc synthesis is absent. Lentiviral-mediated expression of wild-type FMRP in Fmr1 KO neurons suppresses basal dendritic Arc levels and mGluR-LTD, and restores rapid mGluR-triggered Arc synthesis. A phosphomimic of FMRP (S500D) suppresses steady-state dendritic Arc levels but does not rescue mGluR-induced Arc synthesis. A dephosphomimic of FMRP (S500A) neither suppresses dendritic Arc nor supports mGluR-induced Arc synthesis. Accordingly, S500D-FMRP expression in Fmr1 KO neurons suppresses mGluR-LTD, whereas S500A-FMRP has no effect. These data support a model in which phosphorylated FMRP functions to suppress steady-state translation of Arc and LTD. Upon mGluR activation of PP2A, FMRP is rapidly dephosphorylated, which contributes to rapid new synthesis of Arc and mGluR-LTD.


Assuntos
Proteínas do Citoesqueleto/metabolismo , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Depressão Sináptica de Longo Prazo/genética , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Animais , Animais Recém-Nascidos , Células Cultivadas , Proteínas do Citoesqueleto/deficiência , Dendritos/efeitos dos fármacos , Dendritos/genética , Dendritos/metabolismo , Estimulação Elétrica , Inibidores Enzimáticos/farmacologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/genética , Proteína do X Frágil da Deficiência Intelectual/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Hipocampo/citologia , Humanos , Técnicas In Vitro , Depressão Sináptica de Longo Prazo/efeitos dos fármacos , Depressão Sináptica de Longo Prazo/fisiologia , Metoxi-Hidroxifenilglicol/análogos & derivados , Metoxi-Hidroxifenilglicol/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Biológicos , Proteínas do Tecido Nervoso/deficiência , Neurônios/citologia , Neurônios/efeitos dos fármacos , Ácido Okadáico/farmacologia , Técnicas de Patch-Clamp , Fosforilação/efeitos dos fármacos , Fosforilação/genética , Biossíntese de Proteínas/efeitos dos fármacos , Biossíntese de Proteínas/genética , Proteína Fosfatase 2/metabolismo , Ratos , Ratos Long-Evans , Receptores de Glutamato Metabotrópico/genética , Serina/metabolismo , Bloqueadores dos Canais de Sódio/farmacologia , Tetrodotoxina/farmacologia , Fatores de Tempo , Transfecção
10.
Neuron ; 66(2): 191-7, 2010 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-20434996

RESUMO

Fragile X syndrome (FXS), the most common genetic form of mental retardation and autism, is caused by loss-of-function mutations in an RNA-binding protein, Fragile X Mental Retardation Protein (FMRP). Neurons from patients and the mouse Fmr1 knockout (KO) model are characterized by an excess of dendritic spines, suggesting a deficit in excitatory synapse elimination. In response to neuronal activity, myocyte enhancer factor 2 (MEF2) transcription factors induce robust synapse elimination. Here, we demonstrate that MEF2 activation fails to eliminate functional or structural excitatory synapses in hippocampal neurons from Fmr1 KO mice. Similarly, inhibition of endogenous MEF2 increases synapse number in wild-type but not Fmr1 KO neurons. MEF2-dependent synapse elimination is rescued in Fmr1 KO neurons by acute postsynaptic expression of wild-type but not RNA-binding mutants of FMRP. Our results reveal that active MEF2 and FMRP function together in an acute, cell-autonomous mechanism to eliminate excitatory synapses.


Assuntos
Espinhas Dendríticas/metabolismo , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Hipocampo/metabolismo , Fatores de Regulação Miogênica/metabolismo , Sinapses/metabolismo , Animais , Espinhas Dendríticas/genética , Potenciais Pós-Sinápticos Excitadores/genética , Proteína do X Frágil da Deficiência Intelectual/genética , Fatores de Transcrição MEF2 , Camundongos , Camundongos Knockout , Microscopia de Fluorescência por Excitação Multifotônica , Potenciais Pós-Sinápticos em Miniatura/genética , Fatores de Regulação Miogênica/genética , Rede Nervosa/metabolismo , Plasticidade Neuronal/genética , Neurônios/metabolismo , Técnicas de Cultura de Órgãos , Técnicas de Patch-Clamp , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Sinapses/genética , Transcrição Gênica/genética , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...